173 research outputs found

    Compressive Sensing of Multiband Spectrum towards Real-World Wideband Applications.

    Get PDF
    PhD Theses.Spectrum scarcity is a major challenge in wireless communication systems with their rapid evolutions towards more capacity and bandwidth. The fact that the real-world spectrum, as a nite resource, is sparsely utilized in certain bands spurs the proposal of spectrum sharing. In wideband scenarios, accurate real-time spectrum sensing, as an enabler of spectrum sharing, can become ine cient as it naturally requires the sampling rate of the analog-to-digital conversion to exceed the Nyquist rate, which is resourcecostly and energy-consuming. Compressive sensing techniques have been applied in wideband spectrum sensing to achieve sub-Nyquist-rate sampling of frequency sparse signals to alleviate such burdens. A major challenge of compressive spectrum sensing (CSS) is the complexity of the sparse recovery algorithm. Greedy algorithms achieve sparse recovery with low complexity but the required prior knowledge of the signal sparsity. A practical spectrum sparsity estimation scheme is proposed. Furthermore, the dimension of the sparse recovery problem is proposed to be reduced, which further reduces the complexity and achieves signal denoising that promotes recovery delity. The robust detection of incumbent radio is also a fundamental problem of CSS. To address the energy detection problem in CSS, the spectrum statistics of the recovered signals are investigated and a practical threshold adaption scheme for energy detection is proposed. Moreover, it is of particular interest to seek the challenges and opportunities to implement real-world CSS for systems with large bandwidth. Initial research on the practical issues towards the real-world realization of wideband CSS system based on the multicoset sampler architecture is presented. In all, this thesis provides insights into two critical challenges - low-complexity sparse recovery and robust energy detection - in the general CSS context, while also looks into some particular issues towards the real-world CSS implementation based on the i multicoset sampler

    Topological triply-degenerate point with double Fermi arcs

    Full text link
    Unconventional chiral particles have recently been predicted to appear in certain three dimensional (3D) crystal structures containing three- or more-fold linear band degeneracy points (BDPs). These BDPs carry topological charges, but are distinct from the standard twofold Weyl points or fourfold Dirac points, and cannot be described in terms of an emergent relativistic field theory. Here, we report on the experimental observation of a topological threefold BDP in a 3D phononic crystal. Using direct acoustic field mapping, we demonstrate the existence of the threefold BDP in the bulk bandstructure, as well as doubled Fermi arcs of surface states consistent with a topological charge of 2. Another novel BDP, similar to a Dirac point but carrying nonzero topological charge, is connected to the threefold BDP via the doubled Fermi arcs. These findings pave the way to using these unconventional particles for exploring new emergent physical phenomena

    EmotionGesture: Audio-Driven Diverse Emotional Co-Speech 3D Gesture Generation

    Full text link
    Generating vivid and diverse 3D co-speech gestures is crucial for various applications in animating virtual avatars. While most existing methods can generate gestures from audio directly, they usually overlook that emotion is one of the key factors of authentic co-speech gesture generation. In this work, we propose EmotionGesture, a novel framework for synthesizing vivid and diverse emotional co-speech 3D gestures from audio. Considering emotion is often entangled with the rhythmic beat in speech audio, we first develop an Emotion-Beat Mining module (EBM) to extract the emotion and audio beat features as well as model their correlation via a transcript-based visual-rhythm alignment. Then, we propose an initial pose based Spatial-Temporal Prompter (STP) to generate future gestures from the given initial poses. STP effectively models the spatial-temporal correlations between the initial poses and the future gestures, thus producing the spatial-temporal coherent pose prompt. Once we obtain pose prompts, emotion, and audio beat features, we will generate 3D co-speech gestures through a transformer architecture. However, considering the poses of existing datasets often contain jittering effects, this would lead to generating unstable gestures. To address this issue, we propose an effective objective function, dubbed Motion-Smooth Loss. Specifically, we model motion offset to compensate for jittering ground-truth by forcing gestures to be smooth. Last, we present an emotion-conditioned VAE to sample emotion features, enabling us to generate diverse emotional results. Extensive experiments demonstrate that our framework outperforms the state-of-the-art, achieving vivid and diverse emotional co-speech 3D gestures.Comment: Under revie

    Topology Design for Data Center Networks Using Deep Reinforcement Learning

    Get PDF
    This paper is concerned with the topology design of data center networks (DCNs) for low latency and fewer links using deep reinforcement learning (DRL). Starting from a Kvertex-connected graph, we propose an interactive framework with single-objective and multi-objective DRL agents to learn DCN topologies for given node traffic matrices by choosing link matrices to represent the states and actions as well as using the average shortest path length together with action penalty terms as reward feedback. Comparisons with commonly used DCN topologies are given to show the effectiveness and merits of our method. The results reveal that our learned topologies could achieve lower delay compared with common DCN topologies. Moreover, we believe that the method can be extended to other topology metrics, e.g., throughput, by simply modifying the reward functions

    Pulse shape discrimination based on the Tempotron: a powerful classifier on GPU

    Full text link
    This study introduces the Tempotron, a powerful classifier based on a third-generation neural network model, for pulse shape discrimination. By eliminating the need for manual feature extraction, the Tempotron model can process pulse signals directly, generating discrimination results based on learned prior knowledge. The study performed experiments using GPU acceleration, resulting in over a 500 times speedup compared to the CPU-based model, and investigated the impact of noise augmentation on the Tempotron's performance. Experimental results showed that the Tempotron is a potent classifier capable of achieving high discrimination accuracy. Furthermore, analyzing the neural activity of Tempotron during training shed light on its learning characteristics and aided in selecting the Tempotron's hyperparameters. The dataset used in this study and the source code of the GPU-based Tempotron are publicly available on GitHub at https://github.com/HaoranLiu507/TempotronGPU.Comment: 14 pages,7 figure
    • …
    corecore